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Abstract. When birth terms in the rate equation for a simple birth-death population process 
are proportional to the difference between the number of individuals present and a larger 
fixed number, the equilibrium population obeys a binomial distribution. In this paper the 
statistics of such a process are investigated. Properties of the related counting process, 
including interval statistics, are calculated and the results used to evaluate the autocorrela- 
tion function of a binomial telegraph wave. 

1. Introduction 

Although the results derived in this paper may find application in a number of areas, 
the work was stimulated by recent developments in quantum optics and it is appropriate 
to begin with a brief review of this background motivation [l] .  

The semiclassical theory of photoelectric detection asserts that the train of detection 
events registered by a photomultiplier tube constitutes a doubly stochastic Poisson 
process, i.e. a random train of events whose mean is modulated by the intensity of the 
classical Maxwell field falling on the detector [2]. This leads naturally to a pre-eminent 
role for the Poisson and geometric (thermal, Bose-Einstein) distributions in characteris- 
ing the statistics of photon-counting fluctuations, corresponding to constant and 
Gaussian field amplitudes, respectively. It further implies that with an ideal detector, 
( i )  the single-interval photon-counting statistics cannot be sub-Poissonian and (ii) the 
bilinear moment is largest at zero delay time. The quantum theory of photodetection 
[3], on the other hand, recognises the quantised nature of the Maxwell field and may 
be interpreted as implying a Bernoulli sampling of the discrete photon flux incident 
on the detector. Restrictions ( i )  and (ii) are therefore relaxed, and light giving both 
sub-Poissonian and antibunched counting statistics can be envisaged. With the recent 
development of non-classical light sources capable of generating phenomena of this 
kind [ l ]  there is increasing interest in models which can be used to characterise the 
sub-Poissonian regime. The purpose of the work presented in this paper is to examine 
a statistical model generating binomial number fluctuations which span the region 
between fixed and random number populations. 

Binomial states of the radiation field have been studied previously [4-81 but to 
fully characterise the fluctuations of a train of events it is necessary to define a process 
which will generate both statistical and correlation properties. Markovian rate equation 
models for the evolution of photon populations have in the past often provided 
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instructive time-dependent descriptions of devices such as classical sources and  
amplifiers [9-131. Similar models can be found in the standard statistics literature 
[ 141, which provides a useful source of results. However, with a few exceptions [ 151, 
sub-Poissonian processes d o  not appear to be widely discussed. Thus results for the 
binomial process reported here may well be of interest beyond the quantum optics 
community and the calculations in later sections will not be linked to specific applica- 
tions. 

In section 2 a simple rate equation model leading to binomial number fluctuations 
will be discussed. The integrated statistics of a counting process based on emigration 
from the population will be evaluated in section 3. In section 4 the results will be 
applied to the calculation of inter-event time interval statistics and  the properties of 
a binomial telegraph wave will be examined. A discussion and concluding remarks 
follow in section 5. 

2. A binomial process 

Consider a population with constant death rate p and birth rate A. Suppose that losses 
from the population are directly proportional to the number of individuals present but 
that the increase in population due to births is proportional to the difference between 
the population present and  a larger fixed number, N. A rate equation defining such 
a process takes the form 

- p ( n  + 1) P,,*, - pnPn - A ( N - n )  P,, + A ( N - n + 1)P, -, (1) 

where P n ( t )  is the probability of finding n ( S N )  individuals present at time t. A 
generating function for P n ( t )  may be defined as follows: 

d P, 
d t  
-- 

so that the distribution is 

and  its factorial moments are given by 

It is easily verified that Q satisfies the partial differential equation 

If M ( s N j  individuals are present initially then the solution of equation (5) governing 
the population at time t is [16] 

where 

e ( t )  =exp[ - (p+A)r ]  ( 7 )  
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and 

5 =  A l ( p + A ) .  (8) 

Q,w(s;  a) = (1 -5s)” ( 9 )  

At long times, t >> ( p  + A ) - ’ ,  an equilibrium is reached with 

and the population obeys a binomial distribution: 

(10) 

where NC, = N ! / n ! ( N  - n ) !  are the binomial coefficients. The factorial moments of 
the equilibrium distribution (10) are given from relation (4) by 

N[‘] = N ! & ‘ / (  N - r ) !  r 6  N (11) 

nLrl= N t r ’ / ( n ) r = ( l - N - ’ ) ( l - 2 N - ’ ) . . , ( l - ~ N - ’ )  (12) 

so that after normalisation 

and the Fano factor, which measures the noise in the population relative to that of a 
Poisson distribution with the same mean value, takes the form 

~ = ( ( n ~ ) - ( n ) * ) / ( n ) =  1-5. (13) 
The joint distribution of finding n individuals present at time to and n’ at time 

to + t can be calculated from the generating function 
2% 

Q ( s ,  s’) = c (1 - S ) n (  1 - S ’ ) ” P , ,  
n . n  = O  

.v 
= c (1 -s)“P,Q,(s’;  t )  

n = O  

where Qn and P,, are given by (6) and ( lo) ,  respectively, in statistical equilibrium. The 
sum on the right-hand side of equation (14) can be evaluated exactly to give 

Q ( S ,  s ’ ) = [ ( ~ - - s ) ( ~ - ~ s ’ ) + ~ ( ~ - s ) B s s ’ ] ~ ~  (15)  
where 0 is given by equation (7). The bivariate moment or number fluctuation 
autocorrelation function may be evaluated using the formula 

and after normalisation the result obtained is 

Higher-order correlation properties can be derived for the binomial process (1) 
using a similar approach and it should be possible to derive factorisation theorems of 
the type which exist for the related birth-death-immigration process and associated 
Gaussian-Lorentzian intensity fluctuation model [ 171. However, these problems will 
not be addressed here. 

The above results will be discussed in section 5 but it is worth noting that the 
normalised factorial moments are sub-Poissonian and depend only on N,  whilst the 
Fano factor is independent of N being a function only of the parameter 5 defined by 
equation (8). The fluctuations in the population show positive correlation. 
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3. The counting process 

Various counting methods can be employed to determine the evolution of a population. 
In classical statistics it is generally assumed that the counting process does not perturb 
the behaviour of the population, but in the measurement of photon statistics annihila- 
tion of individual energy quanta generally occurs, leading to modification of the 
population process [ 181. Fluctuations in a population may also be monitored through 
measurement of the rate at which individuals leave [18, 191. This indirect method is 
relevant to both classical and  quantum populations. In  the latter case i t  can be used 
to describe measurements on a flux of photons leaving a cavity source such as a laser, 
for example. The train of events generated by monitoring the emigration from a 
population is a process of interest in its own right in  the context of statistical modelling. 
In this section, therefore, the counting process generated by individuals leaving the 
population characterised by equation ( 11 will be investigated. 

Suppose, for generality, that the additonal loss rate to be monitored is 77 and that 
P,,(m; f )  is the joint probability that there are n individuals in the population and m 
have been counted in time t. According to equation (1 )  the rate equation for the joint 
distribution is 

+ 77 ( n  + 1) f,>- ( m - 1, f )  - qnP,, ( m ;  t ) .  
Defining the associated generating function by 

the required counting distributions follows from the relationship 

It is not difficult to show that the generating function (19) satisfies the partial differential 
equation. 

A method of solution of this type of equation is outlined in [16] and reproduced 
in the appendix where it is shown that the equilibrium solution for the counting process 
of interest here is 

Q ' ( 0 , z ;  t ) = e x p i - h r y )  c o s h y + -  -+- s inhy  [ :(; 3 I' 
where 

y = ( p  + A  t 7 7 ) f / 2  

and 
? ,  y - =  y - -  ~ A r ' z .  

Note that if z 1 then y' 3 0. Formulae (20) and (22) yield 
( m ) = A 7 7 N f / ( p + A + v )  

(23) 
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These results will be discussed in section 5 but it is evident that in the short- 
integration time limit, y << 1, the statistics of the counting process defined by equation 
(22) reduce to those of the original population, i.e. 

(28) 

whilst, in general, the number of counts per sample time is not restricted to be less 
than or equal to N. It is also evident that the Fano factor cannot be less than 0.5, i.e. 

(29) 

The conditional generating function implied by a rate equation of the type (18) is 
also given in the appendix of [19] and can be used to calculate the joint counting 
distribution and hence the correlation properties of the flux of individuals leaving the 
population. The formulae are cumbersome and only the bilinear moment or autocorre- 
lation function will be quoted here. This takes the form 

Iim Q'(o, z ;  t j  = (1  - ( m ) z / ~ ) '  -, - 0 

F 3 1 - 2 A ~ / ( p  + A + v ) ' Z  112. 

The interesting feature of this result is that it shows that fluctuations in the counting 
process are negatively correlated or antibunched unlike those of the population itself 
(17) which are bunched. 

4. Interval statistics and a telegraph wave model 

Other statistical properties of the counting process which can be derived from the 
results presented above include the distribution of waiting times to the first count [ 141 

and  the distribution of time intervals between consecutive events [ 141 

p , ( t )  =- 7 
( m )  a'Q' a t -  1 . 

These two formulae may be evaluated directly from equation ( 2 2 )  and it is convenient 
to express the results in units of normalised time, y ,  given by equation ( 2 3 ) .  Thus 

+cosh y x  ) (33) 

'I N 

(34) 
where 
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and the average count rate ( r )  is defined by the formula 

Equations (33) and (34) are plotted in figures 1 and 2 for various values of N and x. 
The antibunched nature of the counts shows as a displacement of the most probable 
interval between events away from the origin. This feature is most prominent for small 
values of N. Setting N = 1 in equations (33) and (34) leads to 

sinh yx 
po( y )  = t (  1 - x') e-y +cosh yx (37)  

It is not difficult to establish analytically that po( y )  is largest at zero time but that 
pl(  y )  displays a maximum when y = x-'  tanh-I x. 

l a )  

?- 

.I 

I b )  

Figure 1. Distribution of times to the first event for a binomial counting process for: 
( a )  N = 1 and the values of x indicated, ( b )  x =0.5 and the values of N indicated. 
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Figure 2. Distribution of times between consecutive events for a binomial counting process 
for: ( a )  N = 1 and the values of x indicated, ( b )  x = 0.5 and the values of N indicated. 

Finally, it is interesting to consider a simple 'continuous' statistical model which 
can be generated by the counting process investigated in the last section. Suppose that 
the loss events from the population governed by equation (1) are associated with the 
zero crossings of a telegraph signal 

T ( t )  = * l .  (39) 

Telegraph wave models find application in many areas of science and engineering 
[20]. It will be assumed for simplicity that T is symmetric 

(TZ"+') = 0 ( TZn) = 1 (40) 
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and unbiased. Generalisation to the biased case is possible but will not be considered 
here [21]. Now, the autocorrelation function of T at two different times to ,  lo+ t is 
equal to the difference between the probability, fe,e,,, of finding an even number of 
crossings in the interval t and the probability, Podd, of finding an  odd number [22]. 
From equation (19) 

pod,,= ~ ( 2 m + 1 ;  r ) = i [ Q ' ( O , O ;  r ) - ~ ' ( 0 , 2 ;  t ) ]  (42) 
in - 0  

so that 

(T ( t , , )T ( f , ,+ f ) )=  Q'10,2; 1 ) .  (43 1 
Inspection of the solution (22-24) reveals that this quantity can be periodic if z = 2. 

(44) 

The second term on the right-hand side of this equation is maximised by the choice 
p = 0, A = 77 and this establishes the inequality 

It is convenient to express (43) in terms of the parameter 

x 2  = 1 - S v A / ( p  + A + 77 )'. 

-1 < * 2 s  1 .  (45) 

e "[cosh y x + i C x + x - ' )  sinh yx]'  

Thus the autocorrelation function (43) may be written for t > 0 

o<*:s 1 
- 1  q + O  (46) 

where y is defined by equation (23) as usual. Therefore the autocorrelation function 
of a binomial telegraph wave can display both monotonic and  periodic behaviour 
depending on the region of parameter space. The simplest periodic structure occurs 
when ,y2 = - 1  and N = 1 leading to 

( T ( O ) T ( t ) j = {  e "[cos y l x~ -~ ( i x l - l x l - ' )  sin ylxi]' 

( T ( 0 )  T (  t ) )  = eCv cos y. (47) 
Result (46) is plotted for other values of N and x 2  in figure 3 .  

r 

! T 

Figure 3. Autocorrelation function of a binomial telegraph wave with the values of ,y 
indicated.  N = 1 (broken curve),  N = 10 (full  curve) .  
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5. Discussion of results 

The rate equation (1) defines a saturable birth-death process with binomial equilibrium 
statistics. The solution obtained in section 2 is straightforward and requires little 
further comment save to remark that the equilibrium distribution, its moments and the 
Fano factor (13) are the same as would be obtained by Bernoulli sampling a fixed 
number N of individuals with efficiency 6. Although the population model ( 1 )  and 
counting process (18) are simply related, the predicted statistical properties are 
markedly different. As expected, the integrated counting statistics, which can be derived 
from result (22), reduce to binomial when the integration time is small compared with 
the population fluctuation time ( p  + A  + v ) - ' ,  i.e. y<< 1, but in general p ( m ;  t )  does 
not vanish for m > N .  If y +  CC with ( m )  held constant then the distribution of m 
approaches Poisson as fluctuations in the increasingly sparse train of emigrations are 
averaged out. However, according to equation (27), when transition rates are held 
fixed, then the smallest value of the Fano factor is achieved in this large-integration 
time limit. This value is at least one-half, whereas by choosing € close to unity in 
equation ( 13) the population fluctuations themselves can be made arbitrarily small. 
The existence of a minimum Fano factor for the counting process is a direct consequence 
of the random sampling of the population by emigration. As noted in previous work, 
[18, 191 the normalised autocorrelation function for a counting process is less than 
that of the monitored population. For the model considered in this paper the reduced 
correlation leads to an  antibunched counting process from a population with positive 
correlation. Note that the ideal counter assumption, made in section 3, can be relaxed 
by including a constant detector efficiency factor (multiplying z in equation (241, for 
example) without substantially changing the results. 

The form of the interval distribution, p ,  shown in figure 2 ( a )  shows that the 
antibunched character of the detection events is most pronounced at small values of 
N and x. When N = 1 (Bernoulli process [8]) there is at most one individual present 
in the population at any given time, whilst small x corresponds to a situation in which 
birth and  loss rates are similar with losses occurring only through emigration ( p  = 0, 
A = v, in equation (35)).  This maximises the count rate per coherence (fluctuation) 
time and  ensures the most efficient monitoring of the most antibunched situation. As 
N increases, the statistics become more Poisson-like and  less antibunched (28), (30) 
and  p o ,  p ,  approach negative exponential distributions as shown in figures l ( b )  and 
2 ( b ) .  Larger values of x with N fixed correspond to smaller count rates (36) and thus 
to an increasing likelihood of longer intervals between counts. This leads to the longer 
tails of p o ,  p ,  in figures l ( a )  amd 2 ( a )  for the larger values of x. 

Plots of the binomial telegraph wave autocorrelation function shown in figure 3 
are consistent with the above discussion. A random telegraph wave with Poisson 
distributed crossings has a negative exponential autocorrelation function [20,23]. A 
telegraph wave of equally spaced crossings, on the other hand, has a periodic saw-tooth 
autocorrelation function [201. The present model should be close to the former case 
when N is large but show some periodicity when N is small and  x is chosen to optimise 
both antibunching and  monitoring, i.e. ,y7 - -1, since ,y' = 1 - 2 (  1 - x'). Inspection of 
figure 3 and equation (47) shows that this is indeed the situation. Only the first 
minimum of the most strongly antibunched situation plotted in figure 3 actually shows 
up since smaller values of 1x1 (larger values of x)  lead to an increase in the expected 
period relative to the exponential damping whilst the latter always dominates at large 
values of N.  Nevertheless anticorrelation is present for some delays when N is odd 
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and x 2 < 0  with a smooth change to monotonic behaviour through the marginal case 

Finally, although this paper is primarily concerned with calculating basic properties 
of the statistical model (1) and  derivative processes, i t  is appropriate to comment 
briefly on applications. In  the field of quantum optics, which originally stimulated the 
work, the binomial process would appear to have potential as a sub-Poissonian input 
in the modelling of devices such as amplifiers and  oscillators. It could also find 
application in the description of direct transfer devices in which statistical properties 
are transferred from one set of particles to another during conversion, e.g. electrons 
to photons in light-emitting diodes [23]. However, applications are obviously not 
restricted to this specialised field. Telegraph wave models, for example, are widely 
used by the scientific community and the results of section 4 provide the basis for a 
new stochastic process of this type. 

In conclusion, this paper has examined the properties of a binomial population 
process and  related counting process. It has been shown that although the population 
is sub-Poissonian, with an  arbitrarily small Fano factor, its fluctuations exhibit positive 
correlation. The counting process, on the other hand, is both sub-Poissonian and  
antibunched, but the degree to which its noise can be reduced below that of a Poisson 
train of events with the same mean is limited to a factor of 2. The antibunched character 
of the counting process is manifest in both distribution of inter-event times and  in the 
correlation properties of a telegraph wave with crossings defined by the events. 

Two aspects of the model require further attention: factorisation properties of 
higher-order correlation functions implied by the Markov nature of the process [ 17,251 
and  the possibilities for numerical simulation. Although it has to be admitted that the 
model is somewhat artificial at this stage, a number of potential applications can be 
envisaged both in quantum optics and other areas of science and  engineering. 

2 x =o.  

Appendix: solution of equation (21) 

Equation (21) must be solved subject to the initial condition 

Q"(s ,z ;  r=O)=Q,(s ;cr ; )  

where QM is given by equation (6) of section 2. Normalisation of the equivalent 
distribution is ensured by the condition. 

Q'(0,O; r )  = 1. (A21 

k = { [ ( p  + T + A  ) ' - ~ A T Z ] " ~  - ( p  + 7 + A ) } / 2 A  (A3) 

The transformation s = so - k, Q' = 0" exp(A N k t )  with 

reduces equation (21) and  condition ( A l )  to 

a t  

Qo(s,, Z ;  0) = [ 1 + A  ( k  - s O ) / ( p  + T/ +A)]". (A5) 
The partial differential equation (A4) is identical in form to equation (5 )  of the 

text and  has solutions of the type (6). A standard method, such as Laplace transforma- 
tion with respect to the time variable, may be used to incorporate the boundary 
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condition (A5), or alternatively by inspection we find 

where 

O=exp[ - (p+A + 77 +2kA)t]. (A7) 

Defining y and y as in relations (24) and (23) of the text and noting that we require 

~ ' ( 0 ,  z; t )  = exp N ( y  - y ) { l +  ( y  - y) ' [1  -exp(-2y)]/4yy}" 

Q'(0, z;  t ) ,  i.e. so=  k in equation (A6), it is clear that 

=exp( -Ny)  c o s h y + -  -+- s inhy  . i :i: 3 I\' 
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